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Introduction Cycles Based on MFe2O4

Cycles Based on Perovskites

2 – H2O & CO2 splitting MexOy + H2 & CO 
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1 – Thermal reduction of metal oxide (driven by solar energy) MexOy-𝛿 and O2
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3 – Syngas Separation & Storage  H2 & CO extraction & pressurization to feed FTR

4 – Fischer-Tropsch reactor  catalytic reaction to produce synthetic crude 

5 – Fractional Distillation  to separate the fuels

Techno-economical challenges

TR: CeO2  CeO2-δ +  δ 2 O2 (>1500°C)

WS:  2 3 CeO2-δ +  2δ
3 H2O   2 3 CeO2 +  2δ

3H2 (< 1100°C)

CDS:  1 3 CeO2-δ +  δ 3 CO2   1 3 CeO2 +  δ 3CO (< 1100°C)

Cycle Based on Ceria

High H2 production

Ni and Co High sintering  deactivation

Hercynite cycle (Co and Al)  robust

Fast kinetics Low H2 and CO production

Low thermal efficiencyHigh resistance to sintering

Much inert material  energy losses & 
need of HR

Slow kinetics

Fastest kinetics
Unexplored

High resistance to sintering
Low H2 and CO production

Reactors/Receiver 
Proven at 100kW for water splitting (HYDROSOL).
Needs of efficiency heat recovery & reduction of thermal losses (conduction & re-
radiation losses). 
Novel designs are required (reactors & integration):
- Monolithic & fixed bed  low thermal conductivity  low efficiency 
- Rotating  higher thermal conductivity & heat recovery but low thermal-shock 

resistance
- Fluidized bed  low thermal conductivity & need for large inert gas flow 
- Particle + vacuum  yet to be build or demonstrated

Materials 
Find novel materials with fast kinetics and high production to increase 
the solar to chemical efficiency.

Economic assessment 
Address simulation with solar availability and integration with fuel synthesis process. 
Production of DME unexplored.

First studies  20% solar to thermal efficiency  USD 1.21/L gasoline

Methanol production  USD 0.8/kg ($1.12/L gasoline) 

Solar fuels opportunities in Australia

- 90% liquid fuels produced externally
- 36% demand in transport sector
(LPG, Diesel & Gasoline)
- 12% demand NG in manufacturing 
and construction

LSD = AUD 1.4/L (TGP Singapore)

CO2 emissions must be less than 19kg/L 
(diesel) WTT

TR: MFe2O4 2FeO•MO + ½ O2 (> 1400°C)

WS:   2 3 2FeO•MO +  2 3 H2O   2 3 MFe2O4 +  2 3 H2 (< 1000°C)

CDS:  1 3 2FeO•MO +  1 3 CO2   1 3 MFe2O4 +  1 3 CO (< 1000°C)

TR: ABO3  ABO3-δ +  δ 2 O2 (≈ 1350°C)

WS:  2 3 ABO3-δ +  2δ
3 H2O   2 3 ABO3 +  2δ

3H2 (< 1100°C)

CDS:  1 3 ABO3-δ +  δ 3 CO2   1 3 ABO3 +  δ 3CO (< 1100°C)
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