

Towards liquid hydrocarbon fuels via solar

thermochemical redox cycles

<u>Alicia Bayon¹</u>, Jim Hinkley¹ and Wojciech Lipinski²

CSIRO Energy Technology, P. O. Box 330, Newcastle, NSW 2300, Australia 2. Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia

1 – Thermal reduction of metal oxide (driven by solar energy) \rightarrow Me_xO_{y- δ} and O₂

 $2 - H_2O \& CO_2$ splitting $\rightarrow Me_xO_v + H_2 \& CO$

3 – Syngas Separation & Storage \rightarrow H₂ & CO extraction & pressurization to feed FTR

4 – Fischer-Tropsch reactor \rightarrow catalytic reaction to produce synthetic crude

5 – Fractional Distillation \rightarrow to separate the fuels

CDS: $\frac{1}{3}$ CeO_{2- δ} + $\frac{\delta}{3}$ CO₂ $\rightarrow \frac{1}{3}$ CeO₂ + $\frac{\delta}{3}$ CO (< 1100°C)

optical access

inlet ----

to pump

Low H₂ and CO production Low thermal efficiency

Much inert material \rightarrow energy losses & need of HR

Techno-economical challenges

Materials

Find novel materials with fast kinetics and high production to increase the solar to chemical efficiency.

Reactors/Receiver

Proven at 100kW for water splitting (HYDROSOL).

Needs of efficiency heat recovery & reduction of thermal losses (conduction & reradiation losses).

Novel designs are required (reactors & integration):

- Monolithic & fixed bed \rightarrow low thermal conductivity \rightarrow low efficiency
- Rotating \rightarrow higher thermal conductivity & heat recovery but low thermal-shock resistance
- Fluidized bed \rightarrow low thermal conductivity & need for large inert gas flow
- Particle + vacuum \rightarrow yet to be build or demonstrated

Economic assessment

P P

Cycles Based on Perovskites

TR: $ABO_3 \rightarrow ABO_{3-\delta} + \frac{\delta}{2}O_2 (\approx 1350^{\circ}C)$

WS: $^{2}/_{3} ABO_{3-\delta} + \frac{^{2}\delta}{_{3}} H_{2}O \rightarrow \frac{^{2}}{_{3}} ABO_{3} + \frac{^{2}\delta}{_{3}} H_{2} (< 1100^{\circ}C)$ CDS: $\frac{1}{3}$ ABO_{3- δ} + $\frac{\delta}{3}$ CO₂ $\rightarrow \frac{1}{3}$ ABO₃ + $\frac{\delta}{3}$ CO (< 1100°C)

Fastest kinetics High resistance to sintering

Main fuel per sector

Manufacturing

& construction

32%

Unexplored Low H₂ and CO production Much inert material \rightarrow energy losses & need of HR

LSD = AUD 1.4/L (TGP Singapore)

- 90% liquid fuels produced externally - 36% demand in transport sector (LPG, Diesel & Gasoline)

Address simulation with solar availability and integration with fuel synthesis process. Production of DME unexplored.

First studies \rightarrow 20% solar to thermal efficiency \rightarrow USD 1.21/L gasoline

 \rightarrow Methanol production \rightarrow USD 0.8/kg (\$1.12/L gasoline)

Acknowledgements

This research was performed as part of the Australian Solar Thermal Research Initiative (ASTRI), a project supported by the Australian Government, through the Australian Renewable Energy Agency (ARENA).

- 12% demand NG in manufacturing and construction

CO₂ emissions must be less than 19kg/L (diesel) WTT

References

Kim et al. *Energy Environ. Sci.*, 5, (2012) p8417-8429 Chueh et al. *Science*, 330, (2010) p1797–1801 Gokon et al. Int J Hydrogen Energy, 36, (2011) 4757-4767 McDaniel et al. Energy Environ Sci., 6 (2013) 2424 Australian Institute of Petroleum - http://www.aip.com.au/

Mining

11%

WWW.ASTRI.ORG.AU

8-10 December 2014 UNSW, Sydney

920