

Creating new CST markets through solar fuels

ASTRI Symposium on The Future of Concentrating Solar Thermal Technology

Graham 'Gus' Nathan, Wojceich Lipinski, Jim Hinkley and the team

3 May 2016

Drivers for solar fuels

Electricity

- Steam turbine
- Gas turbine
- Future cycles

Wholesale ~\$12/GJ

 $\eta_{heat-power} \sim 35\%$

"Non" Exportable

Growing role in light vehicle transport Possible role in heavy freight

Source: CSIRO.au

Liquid transport fuels

- Gasification: Biomass &/or coal
- Reforming: Natural gas
- Splitting: CO₂ & H₂O

Wholesale ~ \$26/GJ

 $\eta_{heat\text{-fuel}} \sim \textbf{20-60}\%$

Exportable commodity

Vital for heavy transport

Essential for air transport

Fractional demand for oil products

Share

72.8

19.1

3.3

3.3

1.5

100.0

(per cent)

2013-14

PJ

1156.9

303.0

52.0

53.0

24.3

1589.2

Average annua	l growth
2013–14 (per cent)	10 years (per cent)
-0.1	1.3
4.9	4.6
-	

Source: BREE (2014)

4.4 6.2 -2.5-3.4-0.11.1

Average

Source: Aus Energy Update (2015)

Total transport

Road

Rail

Water

Other

Comparing feed-stock and technologies

Feedstock	Efficiency solar to feed-stock	LHV feed- stock (MJ/kg)	Feed-stock present cost (\$/tonne)	Feed-stock future cost trend	Resource sustainable capacity	Comment
Oil-rich crops (Gen I)	~3%	~18	~ \$60	stable	zero	Unsustainable because it competes with food crops
Agricultural residues	~3%	~15	\$10-40	stable	Significant niche	CST ↑ output by ~30% - 40% from limited, valuable resource
Woody biomass (Gen II)	~3%	~15	\$150-\$250	stable	Significant niche	CST ↑ output by ~30% - 40% from limited additional resource
Macro & Micro algae (Gen III)	~20%	~15	\$180-450	down	Large (sea-water)	CST ↓ cost of more larger, more expensive, sustainable resource
CO ₂ from flue- gas	-	0	~ \$60	down	Large	Challenging cost targets, but may be necessary
CO ₂ from air	-	0	~ \$600	down	"Infinite"	Likely to be the most expensive of all CST options

Targets and path to market

- Original targets for synthetic diesel by Fischer-Tropsch
 - \$1:20/L with 10% reduction in CO₂ re mineral crude
 - \$2:50/L with sustainable feed-stock and 50% reduction in CO₂
- Path-way to market
 - Establish market with high value biomass co-products / fossil bends
 - Lower cost & de-risk technology for long-term sustainable feed-stock

Source: CSIRO.au

ASTRI: Establishing a pathway

- Common path to CST liquid fuels via syngas
 - Leveraging parallel developments in Fischer-Tropsch Liquids (FTL)
- Advance pathway near to long-term feedstock
 - Fossil fuels: Coal and natural gas
 - Low cost biomass: Agricultural residues
 - Future biomass: Micro- and macro-algae
 - Future CO₂: Thermo-chemical cycles
- Targeted development of selected components
 - Solar hybridised dual fluidised bed (DFB) gasification
 - Super-critical water gasification of algae
 - Reactors for splitting CO₂ and H₂O into CO
 and H₂

ASTRI solar-to-liquid-fuel program

Complementary technologies being developed by ASTRI

Technology	Feed-stock	Temperature	Pressure	Key advantages
Solar hybridised dual fluidised bed gasification	Reactive, dry: Wood, macro-algae, residues, lignite	~ 850 °C	Atmospheric	 Accommodates solar variability upstream of gasifier Heats inert bed material Readily hybridised
Solar super- critical water gasification	Wet: Micro-algae	~400 – 700 °C	230-250 bar	Low reactor temperatureHandles wet feed-stockNo particles in syngas
Thermo- chemical cycles	CO ₂ , H ₂ O	900 – 1500 °C	Atmospheric	 Realistic path to CO₂ regeneration LCOF \$2.00/L if 25% efficiency can be obtained
Liquid synthesis catalysts	CO, CO ₂ & H ₂	200 – 380 °C	2 – 5 bar	 Higher value products Lower operating temperature More efficient use of precious metal catalysts

Distinctive features of ASTRI projects

- Assess whole of plant performance including downstream plant
 - Downstream processing is ~ 45% capex
- Consider solar resource variability in evaluating performance
 - This is a first-order influence
- Establish common framework for techno-economics and LCA CO₂ emissions
 - Compare different technology options for target feed-stock on same basis
- Integrated with, and leveraged from, the other ASTRI projects
 - Heliostats (P11), Receivers (P12) and Energy storage systems (P21)
 - ASTRI 25 100MW scale is well suited to solar fuels
- Integrated national and international program
 - Four Australian and three international institutions

Modelling the whole process: Here for solar hybridised DFB gasification

Source: P. Guo, P. J. van Eyk, W. L. Saw, P. J. Ashman, G. J. Nathan and E. B. Stechel, Energy Fuels 2015, 29, 2738-2751

Process model: Solar super-critical water gasification of algae

Accounting for solar resource variability six days in 1 year time-series

Source: P. Guo, P. J. van Eyk, W. L. Saw, P. J. Ashman, G. J. Nathan and E. B. Stechel, Energy Fuels 2015, 29, 2738-2751

Levelised cost of fuel (LCOF) – Year 2020

Low sulphur diesel (LSD) Australian Institute of Petroleum

LSD \$1.1/L (TGPb)

Short-term Solar mixed reforming of natural gas (CSIRO) 3 CH₄ + 2 H₂O + CO₂

Diesel/Gasoline < 750°C (1-15 bar) -Catalyst + FTS \$1.0/L

Solar hybridised gasification of coal + CCS (UA/ASU/ETH) $C + H_2O$

Diesel/Gasoline SDFB - 850°C (1 bar) + Syngas upgrading + \$0.9/L

Solar hybridised gasification of biomass (UA/ASU/ETH) $C + H_2O$

Diesel/Gasoline SDFB - 850°C (1 bar) + Syngas upgrading + FTS \$1.4/L

Solar SCWG of microalgae (ANU/UC/UA) $C_aH_bO_cN_d \bullet (H_2O)$

400-700°C (230-250 bar) with catalyst + Syngas upgrading + FTS

TC cycles to split H₂O + CO₂ (ANU/CSIRO) $CO_2 + 2 H_2O$

900-1500°C (1 bar) - Metal oxides (non-stoic.)

Diesel/Gasoline \$2.0/L

Input fuel cost

a- Mui, S., Tonachel, L., McEnaney, B. and Shope, E., GHG Emission Factors for High Carbon Intensity Crude Oils. Natural Resources Defense Council, 2010. b- http://www.aip.com.au/October 2015, Terminal Gate Price

■ Fuel synthesis amoritsation ■ Power generation amortisation

■ Electricity sales offset

■ O&M solar system ■ O&M fuel synthesis ■ TOTAL LCOP

E.g. Distribution of LCOF contributions for SRNG

Diesel/Gasoline \$3.0/L

CSIRO

THE UNIVERSITY

of ADELAIDE

Australian

University

National

Mid-term

ong-term

Life cycle CO₂ emissions – Year 2020

Current status of assessment matrix

Process	Technical feasibility (22%)	Solar share (10%)	Economic feasibility (33%)	Sustainability (20%)	Stage of development (15%)	Overall	Priority
Solar mixed reforming of methane	7.8	3.0	6.8	2.5	6.5	5.7	1
Solar hybridized coal gasification via vortex flow reactor	6.3	3.0	5.3	1.0	4.5	4.3	2
Solar hybridized coal gasification via dual fluidised bed gasifier	7.5	3.0	7.1	1.0	6.0	5.4	1
Solar hybridized biomass gasification via dual fluidised bed gasifier	7.0	3.0	4.5	9.0	6.0	6.0	1
Supercritical water gasification of Algae	5.8	5.0	2.3	9.0	6.5	5.3	1
Thermochemical cycles	5.0	10.0	2.3	7.8	7.0	5.4	1

Technology development: Solar hybridised DFB gasification (UA/ASU/ETH)

An economic process that delivers a constant production rate of liquid fuels despite solar variability

Leverages existing/parallel technology:

- Fluidised bed gasification technology has been demonstrated
- Other ASTRI projects

New understanding for target feedstocks/bed material:

- Bed material (physical/thermal/catalytic properties)
- Torrefaction of agricultural residues and algae
- Char reactivity of biomass under gasification environment
- Increases viability for gasification

Future research activities:

- Interaction between solar radiation and fuel ash/bed material
- Planning toward pilot-scale testing

P11 P12 P21

P42 Co

Commercially available

Char reactivity-Grape marc

Cross section of an agglomerate

Linkages across ASTRI projects

Technology development: Solar SCWG (ANU/UC/UA)

Leverages existing/parallel technology:

- H₂ and CH₄ as targets, not liquid fuels
- Leverages understanding of tubular receivers from P12

New understanding for reactor/target feedstock:

- Reaction kinetics for micro-algae under SCWG
- Heat and mass transfer of the reactor

Provision of new design data:

- Materials selection, stress analysis
- System integration

Future research activities:

- Experimental/modelling assessment of transients
- Detailed techno-economic assessment
- Planning toward pilot-scale testing

New rig under construction

Developing validated models of reactions

Technology development: Thermo-chemical cycles (ANU/CSIRO)

Complements international R&D:

- Through novel nano-structured metal oxides
 - \triangleright Efficient redox material with improved $\delta/\Delta T/P_{O2}$

Novel reactor development:

- Reduce radiation losses
- Increase heat recovery

Future research activities:

- Further development of Red-Ox materials
- Testing of reactor with Red-Ox materials
- Planning toward pilot-scale testing

Technology development: Advanced Sabatier (UA/Flinders)

Complements international R&D:

- Demonstrated use of novel metal cluster catalysts deposited on titania (TiO₂)
 - Very efficient use of every metal atom

Reactor development:

- Small cell volume reactors
- Batch and continuous flow

Calculations:

- Cluster allows for exact calculations
- Identified energy of ligand removal

Future research activities:

- Further testing of other clusters
- Reactivity calculations
- Optimising for longer hydrocarbons

Ru₃ cluster vs RuNPs on anatase, rxn at 250 °C

Concluding comments (1)

- Sustainable liquid fuels: Important component of Australia's future energy mix (& global)
 - Vital in air-transport, important in heavy freight, agriculture, mining, hybrid vehicles
- ASTRI has established a common-platform for comparing different technology pathways
 - Identified technologies with realistic potential for \$0.8/L < LCOE < \$1.4/L
 - Plan to broaden framework into common international platform
- CST expected to play a vital role in the lowest cost path to sustainable fuels
 - Biomass co-products: CST increases output by ~ 30-40% of lowest cost, limited resource
 - Algal feed-stock: CST expected to lower cost of "Gen III bio-fuels" to form "bio-solar-fuels"
 - CO₂ feed-stock: CST offers plausible path to CO₂ regeneration, which may be necessary
- ASTRI is driving low-cost technology development for each core feed-stock
 - Solar hybridised DFB gasification: Novel platform with low technical risk, suits biomass co-products
 - Solar super-critical gasification: Well suited to wet feed-stock (micro-algae) novel path to lower cost
 - CO₂ Regeneration: Targeting novel materials and reactors to lower the cost in the longer-term

Future plans

- Expand international partnerships to better coordinate efforts
 - Expand common platform to allow cross comparison of different feed-stocks and technologies
 - Explore benefit of complementary components in a system
- Expand industry partnership
 - End-users, including agricultural and mining sectors
 - Technology providers, including CST, feed-stock providers, fuels processors
- Drive high value technology options through scale-up and development
 - Access international facilities for scale-up
 - Using international partnerships to attract additional resources

Acknowledgements

Australian Government

Australian Renewable Energy Agency

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

Thank you

Market Barriers

- Higher capital cost of syngas processing plant
 - Cost depends on solar reactor performance
 - Costs sensitive to intermittent operation
 - Economics challenging to estimate
- Solar fuels reactors are pre-commercial
 - Reactor design sensitive to feed-stock
- Need a path-way to market
 - Establish with high value, niche products
 - Develop capacity for long-term feed-stock

Source: CSIRO.au