



# Cost Effective O&M through Efficient Mirror Cleaning, Condition Monitoring and Reliability Modelling

**ASTRI Symposium on The Future of Concentrating Solar Thermal Technology** 

**Node Leader: Ted Steinberg** 

Presenter: Pietro Borghesani

## Node Overview – Significance and aim

### **O&M** significance in CSP

- O&M (incl. cleaning) represent a significant component of LCOE (10-15%)
- IRENA identifies O&M as a key area for feasible cost reduction ( $\sim$ 23% in tower CSP)
- Mirror cleaning improvement of 2% results in 0.2-0.25 c/kWh reduction (Sandia/NREL)
- O&M costs for Solar Field of about 0.3-0.5 c/kWh (Kutscher et al. NREL, IRENA)

#### **Aims**

- Increase the productivity of the plant by reducing reflectivity losses due to soiling of heliostats
- Reduce the O&M component of LCOE by optimizing O&M tasks and schedules in CSP power plant

### **Optimisation of Solar Field O&M**

- Optimisation of cleaning technology
- Optimised cleaning system
  - Best nozzle design and parameters
  - Low water consumption
  - Automated cleaning without human operators



- Optimisation of O&M schedule
- Optimised cleaning schedule
  - Which mirror has priority
  - Optimal sector cleaning sequence and timing
  - Automated reflectivity assessment
  - Assessment of soiling impact in design phase
- Optimisation of maintenance

High direct O&M \$ (over-serviced assets)

**Optimal O&M balance** 

High failure/downtime \$ (under-serviced assets)

## Cleaning technology – State of the art

- Mirror Cleaning Technology
  - Trucks or hosing systems: Abengoa Solar's Albatros manned trucks
  - Sprinkler-like systems with fixed nozzles: Heliotex and KNE
  - Cleaning robots
    - Sener's Heliostat Cleaning Team Oriented Robot HECTOR
    - Greenbotics's CleanFleet robots
    - eSolar's Automatic Heliostat Cleaning Robot
    - Novatec Fresnel robots
    - OCS Energy's SolarWash
    - No-Water Mechanical Automated Dusting Device NOMADD in Saudi Arabia)
- Proposed Technology

Linear array of small nozzles utilising a fluid flow/mechanical automated traverse mounted on each mirror.





# Optimisation of cleaning technology CFD for optimisation of nozzle and water spraying

#### Optimisation of key design parameters

#### Nozzle

- Type
- Diameter
- Numbers
- Interaxial distance
- Angle of impingement

#### Fluid

- Pressure
- Flow
- Temperature
- Quality

Standoff distance











## Optimisation of cleaning technology Experimental testing setup

#### Equipment (set up):

- High Speed Camera
- Camera Tripod
- Flash, Diffuser x3
- White Screen
- Water Pump
- Water Pump Controller
- Pressure Gauge x2
- Mirror
- Cold Light Source
- Nozzles

Mirror Sitting: 100mm x 100mm 400mm x 400mm Mirror Angle Sitting: <90° 45° 15°





90°



#### Outputs

#### Impact Surface (Mirror):

- Spray Patterns
- Pressure Patterns
- Pressure Distribution

#### Spray Area:

- Droplet Size
- Droplet Velocity
- Patterns
- Distribution

Nozzle Sitting: Full, Hollow, Flat Cone





Flash Sitting: 1/16th power 105mm zoom





Camera Sitting: Apertures f11 Shutter Speed 1/250



Distance 300mm - 600mm - 800mm

Control
Pump Sitting:
30 bar
60 bar

100 bar

Pump

## Optimisation of cleaning technology Soil Characterisation

#### Dust accumulation (Collinsville, QLD)

- Airborne dust monitor: filters collected months of dust accumulation
- Filters are analysed by SEM and XRD analysis at QUT laboratories to identify chemical compounds & particle size





Filters collected at
Collinsville with different
dust concentration

#### Soil class results:

- Average of dust particle size is around 10μm
- Most particles are albite or silicon dioxide
- Major composition: sodium and silicon



## Optimal O&M schedule

- Optimal O&M schedule
  - Balances direct costs with loss of productivity due to degradation/failure
  - Balance changes in time according to degradation rate, availability and cost of O&M, etc.
  - Requires continuous degradation modelling, degradation assessment and optimisation

High direct O&M \$ (over-serviced assets)

**Optimal O&M balance** 

High failure/downtime \$ (under-serviced assets)

# Optimisation of Solar field O&M First focus of O&M optimisation

- Power Block
  - Largely studied in traditional power generation studies
  - Often highly "constrained" by OEM indications
  - Data-based tools available in O&M team
  - Highly reliant on industry data



### Solar Field

- Typical and specific of the industry
- Cleaning not covered by OEM instructions
- Plant owners interested in "insights" on appropriate scheduling

### First focus of the project

- Greater interest in industry
- Greater specificity
- Greater potential margin for improvement

### Mirror cleaning optimisation

#### State of the art

- Estimate of field-avg. reflectivity loss from reflectivity samples<sup>1</sup>
- Target field-avg. reflectivity<sup>2</sup>
- Cleaning schedule adjusted to keep target time/field-average reflectivity<sup>2</sup>
- Adjustment of field-average possible using reflectivity samples<sup>1</sup>

### **Proposed approach**

- Prediction of reflectivity with soiling model
- Evaluation of economic impact of sector degradation with *Modelica software integration*
- Optimisation of cleaning resources, schedule and sector priority
- Continuous update of model prediction with automated reflectivity monitoring

### Main advantages

- Location-specific reflectivity loss before reflectivity samples (plant design phase, planning)
- Optimisation considers soiling and economic impact of different sectors and includes optimal sequence
- Automated process

<sup>1 &</sup>quot;Optimum target reflectivity for heliostat washing," Kattke (Abengoa) et al.

<sup>2 &</sup>quot;Reflectance measurement in solar tower heliostats fields", Ferna´ndez-Reche (P. Solar Almeria)

# Optimisation of cleaning operations Soiling model overview

#### Inputs to the model

- Concentration in air
- Weather conditions (wind, temperature, RH, ...)
- Geometry of the solar field

#### **Model output**

- Reflectivity loss over time
- Output to be integrated with ASTRI NODE 1 for plant performance effect



# Optimisation of cleaning operations Collinsville data used as input to the model

Available data from Collinsville (QLD) station:

- Weather parameters
- Airborne dust concentration

#### Useful baseline data:

- Input for the model
- Allowed first data processing trials and correlation studies

However, data not suitable for model validation:

- Not always reliable (highly noisy, variable sampling parameters, missing records)
- Very few measurements of mirrors reflectivity and/or soiling













## Optimisation of cleaning operations Experimental activity for soiling model validation



# Optimisation of cleaning operations Reflectivity assessment with calibration cameras





### Assessment of heliostat's soiling:

- Comparison of calibration camera image with reference
- Reference obtained by reflectivity measurements
- DNI as control variable to ensure scalability of result

# Optimisation of cleaning operations Reflectivity assessment with calibration cameras

### **Experiment synthesis**

- Two adjacent heliostats (A and B)
- Mirror A kept as reference
- Mirror B progressively soiled using spray gun and suspension of talcum in water
- At each "coating" measurements taken with:
  - Reflectometer
     (across the reflecting surface)
  - Calibration camera (different exposures)
- Aim is to assess the presence of correlation between calibration camera images and reflectivity of the heliostat surface









# Optimisation of cleaning operations Reflectivity assessment with calibration cameras









## **O&M** optimisation strategy

- Limited study in this area:
  - Design optimisation: average target reflectivity
  - Constant long-term soiling rates
- Proposed approach:
  - Operational focus for cleaning: when should we clean the mirrors? Which area has priority?
    - Time-varying balance between costs
    - Solar Field sectors: best schedule identifies priority and clustering for cleaning activities
    - Time-varying soiling rates
  - Approach then extended to Maintenance
    - Failure/maintenance data required (VastSolar)
    - Starting from Solar field maintenance





### **Collaboration map**



Development of the soiling model



ASTRI P41

Research in concentrating solar thermal power

P41

O&M



optimisation in

Modelica model



Data, industrial collaboration and piloting

A robotic vision system for automatic inspection and evaluation of solar plants





Alternative assessment of reflectivity and mirror condition





## **O&M** optimisation – Summary

Soiling model of field sectors

**Completed** (excl. Validation)

Calibration camera reflect. monitoring

*50%* 

Soiling prediction in each sector Integration with Modelica LCOE impact of soiling in each sector Optimisation algorithm

Optimal cleaning schedule:

- Sector priority
- Cleaning intervals
- Clustering

LCOE impact of optimum cleaning schedule

- Extension of this approach to other equipment and degradation based on industrial maintenance/degradation data
- Engagement of industry crucial for this step

## Cleaning technology – Summary



### Acknowledgements





### **Australian Government**

Australian Renewable Energy Agency

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

















## Thank you

