

Node 1: Capital Cost Reduction

ASTRI Symposium on The Future of Concentrating Solar Thermal Technology

John Pye (ANU) and David Lewis (Flinders), Node 1 Leader Joe Coventry, Project Leader ASTRI Annual Workshop, Melbourne, 3 May 2016

Overview

- Node objectives
- Node rationale

Objectives

• Scope was narrowed to central tower systems only

Rationale

- Kolb et al (2011) Power Tower Technology Roadmap
 - high-T receivers 600–700°C: +13% efficiency save 2 ¢USD/kWhe
 - heliostat drive, manufacturing, structure, optical efficiency, flux measurement – save 2.3 ¢USD/kWhe
- A.T. Kearney (2010)
 - Heliostat size and structure, cost-optimised tracking (total, 18-22% of LCOE)
 - Field layout, multi-tower, high-temperature receivers (save 10-15% of LCOE)
- Sunshot (2010)
 - Demanding aggressive cost reductions from 21 ¢USD to 6 ¢USD by 2020
- ECOSTAR (2005)
 - heliostat size and structure save 7-11% of LCOE
 - advanced mirrors save 2-6% of LCOE
 - increased receiver performance save 3-7% of LCOE

Independently-conducted studies before ASTRI indicated strong potential cost savings for CSP (-40% of LCOE) from heliostat field cost reduction and receiver efficiency.

Two projects

- Project P11: Heliostat Field Cost Down Project
- Project P12: Receiver Performance Project

P11: Heliostat Field Cost Down Project

- Objective: proof of concept for a new low-cost heliostat 120 AUD/m² (stretch target 90 AUD/m²)
 - a 46% reduction compared to baseline field cost
 - results in 17% reduction in overall system capex
- **Product development** approach guides our topics
- Technical streams goes deep but also produces **portable results**

ASTRI partners ANU, Flinders, UA, UniSA, QUT, CSIRO

120 AUD ≈ 93 USD ≈ 82 EUR 90 AUD ≈ 70 USD ≈ 62 EUR

t development ch	 B. 30 m² sandwich panel heliostat (thin glass or film mirror, sandwich panel, tuned curvature, few facets, little support structure, shock absorbers, wind-load reducing features, autonomous)
	D. Drop-in heliostat (prefabricated, autonomous, mass-based foundation, simple installation)
Produc approac	C. Mini-facet heliostat (small plastic mirror facets mounted on 'coarse' tracking heliostat frame, small actuators, active focusing)
hnical streams	E. Mirror facet development Glass/metal and plastic/composite sandwich
	F. Aerodynamics and wind loads
	G. Manufacturing systems
	H. Design and testing tools
	I. O&M systems Holistic design incorporating cleaning
Tec	J. Heliostat field optimisation

P11: 30 m² sandwich panel heliostat

- Concept:
 - Structurally integrated sandwich panels
 - 30 m², four facets joined at edges
 - COTS, delivery/assembly installation logistics
- Integrated structural/optical analysis conducted; design iteration underway
- Costing analysis: 116 AUD/m², on track to meet cost target.

Company: APC

P11: Mini-facet heliostat

- Optical/astigmatism benefits considered attractive, but not quantified.
- Injection-moulded facets and frontsurface coatings considered.
- Cost: approx +16 AUD/m² relative to reference design.
- Stream discontinued

Model trace

Modelling of tracking extents

Heliostat-level tracking

Mirror actuators from automotive industry: \$5 ea.

Company: SMR

Facet-level tracking: would

reduce astigmatism for better optical performance, could permit one axis of heliostat-level tracking to be eliminated.

WWW.ASTRI.ORG.AU

P11: Drop-in heliostat

- Concept for rapid (~30 min) installation in the field:
 - 12-16 m² with three-four facets
 - Concrete-free non-displacement pile footings (SureFoot)
 - GPS and accelerometer sensing for initial placement/alignment and close-loop tracking
- Progress:
 - Current cost estimate is a little high; methodology being refined.
 - Optical and CFD analysis of novel shape, patenting in process.

Initial concept. Current concept has evolved significantly and patenting is being pursued.

Company: SureFoot

P11: Mirror facet development

- Sandwich-panel facets need low-cost materials, 1 mrad optics, high strength, low-cost manufacturing process.
- Core materials down-selected to
 - Aluminium honeycomb facets: built and tested, results encouraging. Cost ~5 AUD/m².
 - Polyurethane: will build with help of APC Pty Ltd, testing planned. Cost ~10 AUD/m² or less.
- Photogrammetry, finite element analysis and ray-tracing analysis of whole panels under way.

Sandwich panel heliostats offer the prospect to reduce material use in conventional heliostats, saving cost.

P11: Heliostat field optimisation

- Raytracing and cone optics models of heliostat fields
- Three key aims:
 - Optimised field layouts
 - Decision support for cost/performance tradeoffs
 - Support for receiver design efforts
- Open-source software including *Tonatiuh* rapidly being adopted by many groups in CSP community.

Annual visibility as a function of azimuthal and radial separations for azimuth-elevation (L) and tilt-roll tracking (R)

P11: Aerodynamics and wind loads

- Major effects of gusting and turbulence
- Wind tunnel testing facility
- Numerical modelling (CFD: ELES)
- Review/review state-of-art correlations

Characterising windinduced pressure distributions on a scaled-down heliostat

Embedded large-eddy simulation (ELES) *

P11: Related efforts, future work

Future work, now to Y8

- Down-select to a single concept
- Wind loads in heliostat fields
- Aerodynamic optimisation and dynamic loads
- Multiple prototyping iterating (TRL 6-7 if possible)
- Integrated structural/optical modelling
- Linking with industry for manufacturability studies

ASTRI points of difference:

Structurally-integrated sandwich panels, strong focus on wind loads, novel controls and setup, optimised sizing for Australian context.

Some related efforts on low-cost heliostats

JPL film-on-foam

Stellio glass-on-frame

CSIRO radial ribs, single facet

Stellenbosch 'plonkable' module

P11: Summary

- <u>Two concepts</u> for low-cost heliostats currently in development.
 - 30 m² sandwich panel heliostat
 - Drop-in heliostat

Down-selection/merging intended

- On track for cost target of 120 AUD/m².
- <u>Tools</u> for modelling and analysis have advanced in parallel.
 - Sandwich panel facets: lighter-weight panels
 - Field layouts: increased optical efficiency
 - Wind loads: reduced structural redundancy
- <u>Impact</u> will be a 17% capex reduction, key contribution to 12 cAUD/kWh target.

P12: Receiver Performance Project

Participants: ANU, UA, CSIRO, Flinders, UQ, Sandia

Objectives

- Based on ASTRI scoping study, decision was to focus on
 - Tubular sodium receivers
 - High-efficiency particle receivers

	Efficiencv*	T_{out}	,
Tubular receiver	≥ 91%	≥700°C	
Particle receiver	≥ 85 %	≥800°C <	

*Design point efficiency

Three concepts in development:

- 'FONaR' sodium receiver
- Falling particle receiver
- Solar expanding vortex receiver

P12: 'FONaR' sodium receiver

- Achieving <u>91% at 700°C with sodium</u> will represent a working temperature well higher than that demonstrated elsewhere.
 - Thermo-plastic stress analysis of receiver tubes
 - Multi-objective optimisation of a thermal/optical model with varying geometry: *flux optimised*
 - Developing/installing new sodium lab facilities, for eventual solar simulator testing

Sodium, as a high-conductivity liquid for heat transfer, offers the strong potential to move beyond temperature and efficiency limits that state-of-the-art molten salt receivers are subjected to.

Companies: CMI, VastSolar

Current model: <u>88%</u> (convex)

HEATER

PUMP

WWW.ASTRI.ORG.AU

P12: Falling particle receiver

- Novel falling particle receiver currently being patented (in collaboration with Sandia)
- Current modelling gives <u>89%</u> efficiency at summer noon. On track for efficiency target.
- Computational fluid dynamics (CFD) modelling
- Ray-tracing combined with analysis based on radiative transmissivity in order to assess receiver efficiency as a function of particle size and flow rate
- Experimental tests currently being prepared

Particle receivers offer direct absorption of solar flux and may unlock much higher temperatures and efficiencies, if particle loss and stability issues can be addressed.

P12: Solar Expanding Vortex Receiver (SEVR)

- Cyclone-like particle cloud in a cavity
 - Flow field configured to reduce deposition on the window, or may allow elimination of the window entirely.
 - Residence times tuned well to particle sinze (larger particles remain in flux for longer, more uniform temperatures)
- Selection of particles underway in common with falling particle effort
- CFD and experimental work

SEVR concept offers potential for a highefficiency windowless receiver with uniformly heated particles

P12: Related efforts, future work

Future work now – Y8

- Develop 2 MW/m² receivers meeting the efficiency targets to point where ready for scale-up
 - High-accuracy models validated through experiments
 - Prototyping and de-risking
 - Full energy and annual performance analysis for system-level cost/efficiency impact
 - Materials selection and corrosion issues
 - Parametric and optimisation studies

Related efforts

- Vast Solar
 - Experimental facility
 - Related ARC project with ANU on sodium boiler
- DLR, Sandia, ETH work on particle receivers
- KIT work on liquid metals/sodium

P12: Summary

- Tubular and particle receiver concepts exist that meet project efficiency targets
- Key technical areas
 - Computational models including CFD and ray-tracing
 - Thermal stresses in high-temperature sodium tubes
 - Radiative heat transfer in particle receivers
 - Material selection
 - Multi-objective receiver design optimisation
- New experimental facilities

Node 1: Summary

- Focussed topics arising from scoping studies conducted early in Y1-4.
- Low-cost heliostats
 - Novel concepts for heliostat cost reduction, 120 AUD/m²
 - High-quality analysis and tools to allow evaluation and optimisation
- High-efficiency receivers
 - Particle (85%, 800°C) and sodium receivers (91%, 700°C) on track to meet targets
 - CFD and optical analysis advancing strongly for all concepts
- Patenting in progress in several areas, increasing links with industry
- Need to prove concepts, increase TRL, prove that fully integrated systems can deliver the LCOE target.

Acknowledgements

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

Extra slides

Node 1: related ARENA projects

- CSIRO heliostat, HeliostatSA
- Vast Solar 6 MW pilot
- ANU bladed receivers
- ANU cavity receiver
- ANU MnOx optical modelling for a high-T receiver concept
- MUSIC
- Recent CSP feasibility studies (Perejori, Collinsville, Port Augusta)
- UA Solar alumina project?
- UNSW scale-up thermochemical reactors

Related heliostat projects

- CSIRO heliostat/HeliostatSA
- SBP Stelio
- DLR Pfahl 'rim drive'
- Abengoa Khi Solar 1 sandwich
- Stellenbosch 'plonkables'
- Heliosystems
- Aalborg/eSolar
- JPL 'film on foam'

Related efforts

Stellio

