International i,

. Energy Agency S .
lea v
Secure ¢ Sustainable e Together - ‘
™
CST after COP-21

> A global perspective
-~

i
ibert

Renewa ision
International gency

www.iea.org RI Workshop, Melbourne, 2 May 2016



International

Liea """ COP21 a historic milestone
- Jiles

= Universal agreement on:

» “GHG emissions peak asap”
» Stay “below 2°C” temperature increase, get close to 1.5

» Reach “carbon-neutrality” in second half of this century

= Renewables around COP21

» Renewables explicitly referred to in around 100 pledges
» Record renewable capacity additions in 2014 and 2015

» Lowest-ever announced wind and solar prices

= Downturn in prices for all fossil fuels

» 0il & gas set to face a second year of falling upstream investment in 2016

» Coal prices remain at rock-bottom as demand slows in China

© OECD/IEA 2016



@ead =, Renewables set to dominate
) L . S
S

o additions in powe S

World net additions to power capacity
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The share of renewables in net additions to power capacity continues to rise with
non-hydro sources reaching nearly half of the total
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Indexed generation costs
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High levels of incentives are no longer necessary for solar PV and onshore wind, but their
economic attractiveness still depends on regulatory framework and market design

© OECD/IEA 2016
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Recent announced long-term contract prices for new renewable power to be commissioned over 2016-2019
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o0 \Nind and Solar PV pri

www.iea.org

Germany Germany
USD 67-100/MWh USD 87 /MWh

USD 30-35/MWh

Y

United States Canada Turkey )
USD 47/MWh USD 66/MWh UsD 73/MW
China

United States

USD 65-70/MWh }

Brazil
USD 81/MWh

USD 80-91/MWh

India
USD 67-94/MWh

Mexico

USD 35+5/MWh Jordan

USD 61-77/MWh

Peru
USD 38/MWh

Peru
TS United Arab Emirates

USD 49/MWh
/ USD 58/MWh
Brazil
USD 49/MWh Australia
USD 69/MWh

South Africa Egypt

Chile Uruguay South Africa
USD 65/MWh USD 41-50/MWh

USD 65-68/MWh USD 90/MWh USD 51/MWh

This map is without prejudice to the status or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area
Note: Values reported in nominal USD includes preferred bidders, PPAs or FITs. US values are calculated excluding tax credits. Delivery date and costs may be different than those reported at the time of the auction.

Best results occur where price competition, long-term contracts and good resource
availability are combined



Greater efforts are still needed
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Source: World Energy Outlook 2015

In a 2° C Scenario, energy efficiency and renewables, notably solar and wind,
deliver the bulk of GHG emission reductions

OECD/IEA 2015



o) R Global power mix needs a shift
.. reversal \
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Source: Energy Technology Perspectives 2014
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= Natural gas
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= Generation today: = Generation 2DS 2050:
e Fossil fuels: 68% e Renewables: 65 -79%
e Renewables: 20% e Fossil fuels: 20-12%
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= PV takes all light = STE takes direct light
= PV almost everywhere = STE only in semi-arid countries
= Scalable from kW to GW = Mostly for utilities
= Variable and mid-day " Firm, dispatchable, .backup
" Peak & mid-peak = Peakto base-loade}{storage
= Smart grids = HVDC lines for transport

Firm & flexible CSP capacities can help integrate more PV

© OECD/IEA 2016
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California:

- expected evolution of the net load of a typical spring day

Flexibility of other
power system
components
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Source: California ISO, 2014

- expected evolution of the value of PV and CST

33% renewables 40% renewables

STE with storage PV Value STE with storage PV Value
Value component |value (USD/MWh)| (USD/MWh) |value (USD/MWh)| (USD/MWh)

Operational 46.6 31.9 46.2 298
Capacity 479-60.8 15.2-26.3 49.8-63.1 24-176
Total 94.6-107 47.1-58.2 96.0-109 32.2-474

Source: Jorgenson, Denholm & Mehos, 2014
© OECD/IEA 2016
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f Solar Thermal s

Capacity

0 2 4 6 8 10 12 14 16 18 20 22

Hours of the day
B Baseload Solar PV mmmm CSP s Mid-merit Demand net of PV

Thanks to thermal storage, STE is generated on demand when the sun sets
while demand often peaks and value of electricity increases

© OECD/IEA 2014
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. Solar Thermal G
Photovoltaic Energy Electricity 2014 Edition
PV ahead, CST lags behind
PV: 160
= Massive cost reductions ‘é 120
= Also for distributed ¥
generation & o
g 4
STE: ® 2
- FlEXible generation not 02000 20101 26022063 2604 2065 20]0620107 ZOIOS 2609 20'1020111 20112 2o|13
yet fully valued e

Progress in the US Old Roadmap To be reached
. . Milestones for 2020 (GW)
Pipeline moved to

5 years ahead
STE 140 > 7 years later

Chile, China, Morocco,
South Africa

© OECD/IEA 2014



Electricity

= Solar Thermal

2014 Edition

New roadmap vision for solar electricity

Global generation in TWh
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Together, PV and STE could become the largest source

of electricity worldwide before 2050
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Direct Normal Irradiation (DNI)
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Source: Adapted from STE Roadmap 2010

Map created and map layout by 4.: 2008
(hitp:/Mrovwe.dir.de)
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PV + Battery power close 1o « socket parity » in Germany
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(e.g. Germany)
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Utility-scale PV + pumped-hydro storage
(e.g. Chile)
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LESED( SOLAR POWER PROUECT

Tomorrow?
(e.g. ARPA-E’s Focus programme, USA)

Concentrated sunlight

Hot fluid

outlet fluid inlet

JASPER SOLAR POWER PRGIECT
Operaions Date: Cckter 201 : i Sub-gap phOtonS
Stee: 95 MW
Eectricty Production 150,000 Mi-urs vty
Homes Powered. mcre tan 80 homes

PV electricity
from above-gap

Lesedi, Jasper and Redstone Power Projects. Source: .
photons

Today (almost) Fluid at max
(e.g. South Africa) PV temp

(SRR
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CSP investment costs (IEA, 2014) CSP LCOE (IRENA, forthcoming)

2015 2025
25
STE 6-hour storage
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208 Min 205 Max = = 205 hi-Ren Min = = 205 hi-Ren Max Trough Tower Trough Tower
~ = DNI 2550
® DNI 2000 (WACC 7.5%) - DNI 2900 (WACC 7.5%)
DNI 2000 (WACC 10%) - DNI 2900 (WACC 5%)
CSP LCOE (IEA, 2014) s = Dl

USD/MWh - 2015| 2020| 2025| 2030| 2035| 2040 2045|2050
W/o Min 158 126 105 93 88 83 80 76
storage Max 263 209 175 156 147 139 133 127
W. 6-hour [EYg 146 116 97 86 82 77 74 71
storage Max 172 137 115 102 96 91 87 83

© OECD/IEA 2016
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Ten years ago, LCOE of CST power was half that of PV
Now, the reverse holds true

CST power will not beat PV on costs, but compares with
PV + storage

Time-of-delivery payments reflect the true value of
storage

CST Power was born in the 1980s in California thanks to
time-of-delivery energy and capacity payments

CST is being developed in South Africa thanks to a x2.7
multiplier of Base Price during 5 hours a day



2050 Low-Carbon Economy Roadmap

80% GHG decarbonisation in 2050 (cf global 2°C objective)

100% 100%

Power Sector

80% - 80%

Current policy

60% Residential & Tertiary

40% - 40%
Transport

20% 20%
Non CO, Agriculture
Non CO, Other Sectors

0% 0%

1990 2000 2010 2020 2030 2040 2050
Source: European Commission 2050 Roadmap, 2011 20
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Least efficient: resistances (Joule)

* Could play a transitory role in parallel with
existing fossil fuel boilers

Industrial heat pumps
 Commercially available to 100°C output

* Reaching 140°C output would double
potential

Induction heating and smelting
Microwaves (food, rubber, plastics)...

Foucaut currents, electric ovens,

electric arcs, plasma torches, etc.
& SeDF

CHANGER L'ENERGIE ENSEMBLE

Photo Credit : SAIREM

© OECD/IEA 2016
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iea  Solar heat for industries

Solar water heatersin a

service area (Austria)
Source: AEE INTEC.

Source: Deepak Gi\
Cooking with Scheffler dishes (India)


http://renewablebook.files.wordpress.com/2010/09/solarengineshuman2.jpeg
http://renewablebook.files.wordpress.com/2010/09/solarengineshuman2.jpeg
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6 installations from ,Inventive X
Power” in Mexico: ‘ \
- Buenavista Greenhouse .
* La Doiita Dairy

* Lacteos Covbars Dairy

* Nutricion Marina (Food
Pellets)

* Matatlan Dairy
* El Indio Dairy

uuuuu

© OECD/IEA 2016
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Solar ovens... in the Pyrenees

ource: Four Solaire Développement < ’/ﬁ'

e RIS @ SCIENCE ET VIE

© OECD/IEA 2016
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Mirrah, Oman, 2017: 1 GWth for EOR
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Y Glasspoint technology
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i Solar fuels ‘
. From hydrocarbon or

»
H.O Concentrating
i solar energy
l 2 l i B!
) ¢ +

o Solar electrici

Solar thermolysis thermochemical | l Y Solar reforming Solar cracking Solar gasification
cycle + electrolysis

| d 3 ' £

Source: PSI/ETH-Ziirich.
Solar fuels
(hydrogen, syngas)

® H, can first be blended with natural gas

B Can be converted into various energy carriers:
methane, methanol, DME, ammonia...

B Other options based on redox cycles, flow batteries...

© OECD/IEA 2016
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CST- for electroch,é‘mﬁc‘al processes_

[I‘ower, hv ]
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Hi Hi : z concentratio
s g light harvesting & resolution
HEERL & concentration
gl |8 |a
v |8 3‘ SL /
o | o fg ( spectral resolution for)
E @ E, thermal & electronic excitation
ol |ul|o T / \ P
ieat photovoltaic
‘Q lj :
T Al f- npu e- charge transfer /
msoilation 'E : 1
concentration > 9 %:. é-g: \ E / / ,
STEP % & - heated separation & M IR %visible
m o .| : R
| it @ electrolysis collection B

hv hv
L’J; ] Solar R B/B Ol g’e-
Thermal B/ B electrolyzer "
charge, heat Electrochemical R Heliostat ' i

Photo conversion to - energetic
& molecular flow form energetic molecules B Field prodgucts

Electrolysis at high temperature requires significantly less power —
combining CST heat and renewable power makes full sense

© OECD/IEA 2016



s Various CST paths to carbon-free
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solar thermal heated electrolysis A STEP | |
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e

» Including process CO2 emissions
» Also to support CO2 capture from coal plants (ARENA), biomass
plants or perhaps from air
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= CST is being challenged by PV but will have an
important role to play in power systems thanks
to built-in storage

= CST heat, alone or with RE power, can

 substitute fossil fuel use in many industries, avoiding
energy (and possibly process) CO2 emissions

 manufacture CO2-free hydrogen and energy vectors

= CST will be needed to reach carbon-neutrality in
second half of the century and stay below 2°C
temperature change



And finally




