WWW.ASTRI.ORG.AU

Structural Performance of Micro- and Nanostructured Ceria for Solar Thermochemical Fuel Production^[1]

<u>Xiang Gao¹</u>, Alejandro Vidal¹, Alicia Bayon², Roman Bader¹, Jim Hinkley², Wojciech Lipinski¹ and Antonio Tricoli¹

AUSTRALIAN SOLAR THERMAL RESEARCH INITIATIVE

ASTRI

Syngas production via thermochemical redox cycles driven by high-flux solar irradiation is a promising emerging technology for chemical storage of solar energy. Here we investigate the performance of syngas production via nanostructured ceria with high surface area and porosity against commercial powders in two-step thermochemical redox cycles.

Introduction

Methane partial oxidation (MPO) significantly alleviates the reduction temperature requirement.

Fuel Production Performance

- The nano-structured ceria showed up to 167%, 144% and 97%
- Ceria is a state-of-the-art redox material for stable two-step water splitting (WS) or carbon dioxide splitting (CDS) to produce syngas^[2].
- Nanostructuring may improve reaction kinetics of ceria.
- synthesis provides scalable production Flame of ceria nanoparticles^[3].

increase of initial average production rates of H2 (MPO), CO (MPO) and CO (CDS), respectively, compared to those of microstructured ceria.

After 10 MPO-CDS cycles, despite of the deterioration of structural properties, the above production rates of nanostructured ceria were still 57%, 54% and 15% higher.

Figure 2: XRD patterns (a) and TEM micrographs of the micro- (b, c) and nanostructured (d, e) ceria before and after 10-cycle MPO-CDS isothermal tests.

Figure 3: H₂ and CO production rates of the microstructured (a) and nanostructured (b) ceria during 10-cycle MPO-CDS tests. Each cycle includes a reduction step driven by methane partial oxidation (MPO) followed by an oxidation step driven by carbon dioxide splitting (CDS).

Conclusions

- A nanostructured ceria with fast reaction kinetics for two-step thermochemical MPO-CDS fuel production cycles was presented.
- Scalable production of nanostructured ceria with high SSA by flame synthesis was achieved.

Table 1: Specific surface area (SSA), particle sizes (d_{RET}) , and crystal sizes (d_{XRD}) of the micro- and nanostructured ceria before and after 10-cycle MPO-CDS isothermal tests.

Material	$SSA (m^2 g^{-1})$		d _{BET} (nm)		d _{XRD} (nm)	
	As-Prepared	10 cycles	As-Prepared	10 cycles	As-Prepared	10 cycles
Micro- CeO ₂	7.34	1.59	106.9	493.3	83.8	86.1
Nano- CeO ₂	76.63	1.58	10.2	496.4	9.4	51.3

- The fast kinetics was mainly attributed to high initial SSA.
- Grain boundary defects helped to increase the oxygen vacancy formation and improve the fuel production performance.
- Maintaining the nanoscale features is crucial for long-term solar thermochemical fuel production performance.

AUTHOR CONTACT

Xiang Gao

- e Michael.gao@anu.edu.au
- w stg.anu.edu.au nano.cecs.anu.edu.au

+61 2 6125 7022

AUTHOR AFFILIATIONS:

- 1. Research School of Engineering, the Australian National University, Canberra ACT 2601, Australia
- 2. CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300, Australia

REFERENCES

- 1. Gao, X., Vidal, A., Bayon, A., Bader, R., Hinkley, J., Lipiński, W., & Tricoli, A. (2015). Structural Performance of Micro and Nano-structured Ceria for Solar Thermochemical Fuel Production. Paper presented at the Asia-Pacific Solar Research Conference, Brisbane.
- 2. Muhich, C. L., Ehrhart, B. D., Al-Shankiti, I., Ward, B. J., Musgrave, C. B., & Weimer, A. W. (2015). A review and perspective of efficient hydrogen generation via solar thermal water splitting. *Wiley* Interdisciplinary Reviews: Energy and Environment.
- Nasiri, N., Bo, R., Wang, F., Fu, L., & Tricoli, A. (2015). Ultraporous Electron-Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visible-Blind UV Photodetectors. Advanced Materials, 27(29), 4336-4343.

ACKNOWLEDGEMENTS

The Australian Solar Thermal Research Initiative (ASTRI) program is supported by the Australian Government, through the Australian Renewable Energy Agency (ARENA).

