

The development of the thermal energy storage of cost-effective high temperature phase change materials (PCMs) is one path to increase CSP value and reduce its cost [1]. However, the thermal stability of the PCMs at high temperature is a major concern.

nts)

Composition, wt.%	Tm(°C)	ΔHf (J/g)	Cost (\$) per 100g	Reference	Sample ID
59.5%Na ₂ CO ₃ - 40.5%NaCl	632.0	294.9	20.57	Factsage	PCM1
	637.0	283.0		This work	
Li ₂ CO ₃ (42)- 58Na ₂ CO ₃	498	393	58.29	Factsage	PCM2
	498.3	330.8		This work	

The measured values of melting temperature and latent heat of PCM1 & PCM2 are consistent with those calculated using FactSage software 6.4

Effect of operating environments

Fig. 3. DSC curves of initial samples and up to 300 cycled PM1 (left) and PM2 (right)

- Mono-peak DSC spectra of PM1 and PM2 were observed after 300 thermal cycling tests. suggesting that the eutectic salts are of uniform mixtures
- DSC curves of cycled salts do not shift much after 300 cycles as compared with the DSC curves of their initial salts

XRD analysis of PCMs

Fig. 1. DSC/TG-MS analysis of PCM1 in CO₂ (left) and N₂ (right)

Fig.4. XRD patterns of initial sample and up to 300 cycled PM1 and PM2

- XRD patterns and intensities of cycled PM1 and PM2 were very similar to ones of their initial samples
- No obvious separated phase and composition changes occur after up to 300 thermal cycling tests

Conclusions

PCM1 and PCM2 have good thermal stability without weight loss around their melting points in CO₂ compared with PM1 with a 0.51 % weight loss and PM2 with 0.8% weight loss in N_2 PCM1 and PCM2 show the excellent thermal stability after 300 thermal cycling tests in CO₂

Fig. 2. DSC/TG-MS analysis of PCM2 in CO₂ (left) and N₂ (right)

- Thermal stability of PM1 and PM2 is affected by operating environments
- PCM1 and PCM2 show no weight loss around their melting points in CO₂ compared with PM1 with a 0.51 % weight loss and PM2 with 0.8% weight loss in N₂
- PCM1 and PCM2 would be promising for use as high temperature PCMs in CO₂

AUTHOR CONTACT REFERENCES

CSIR

1. K Nithyanandam, R. Pitchumani, Cost and performance Yanping.Sun@csior.au analysis of concentrated solar power systems with integrated latent thermal energy storage, *Energy* 64 (2014) www.astri.org.au 793-810

ACKNOWLEDGEMENTS

This research was performed as part of the Australian Solar Thermal Research Initiative (ASTRI) project supported by the Australian Government, through the Australian Renewable Energy Agency (ARENA) as well as CSIRO Energy. Yifeng Jiang gratefully acknowledges the PhD Scholarship provided by CSIRO and UNSW

