

ASTRI Solar Fuels Preliminary Study to set LCOF Benchmark ASTRI Annual Workshop, 2015

G. Nathan¹, P. Ashman¹, W. Saw¹, P. van Eyk¹, P. Guo¹, G. Metha¹, J. Alvino¹, C. Doonan¹, D. Losic¹, R. Karunagaran¹, A. Bayon², J. Hinkley², J. Pye³, W. Lipinskí³, M. Venkataraman³, A. Weimer^{3,4}, T. Nann⁵, G. Andersson⁶, E. Stechel⁷, A. Steinfeld⁸

¹The University of Adelaide ²CSIRO ³Australian National University ⁴University of Colorado ⁵Flinders University ⁶University of South Australia ⁷Arizona State University ⁸ETH Zürich

11th February 2015

Background

Need for Targets for cost and broad viability

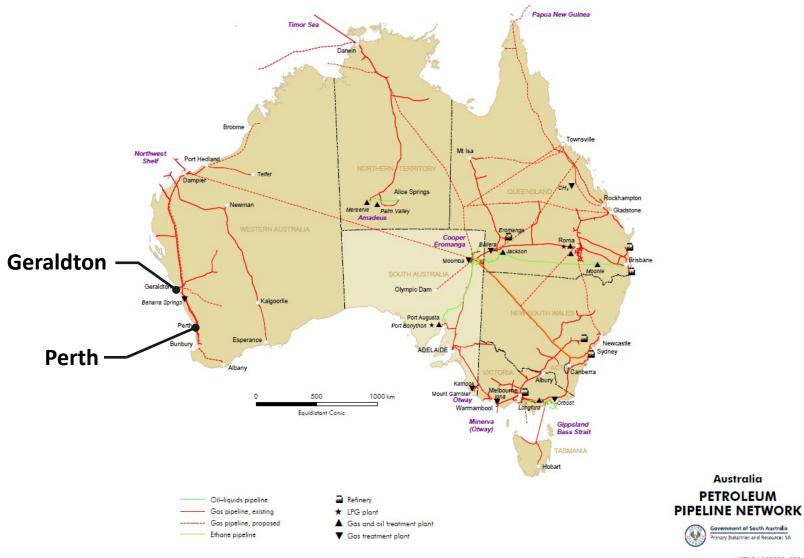
• IEA's Solar PACES Executive committee identified (at last meeting):

- Cost targets are needed to drive development of solar chemistry
 - None are available to our knowledge

Setting realistic targets is challenging because

- Solar chemistry is at a much earlier stage of development than solar power
 - No commercial plants have been built
 - > No pilot-scale plants have been built of the full process
- Significant differences between commercial and solar chemical process
 - > Commercial processes are steady while the solar resource is intermittent
 - Commercial processes are 10 1,000 times larger
- Significant differences between CST power and chemical process
 - > Chemical plants operate at higher temperature than current power plants
 - > Solar reactors typically differ from solar receivers
 - > Solar chemistry are typically more complex, with more downstream processing
- The diversity of chemical process is greater than for power plants
 - Many types of fuels and mineral processes
 - Many options within each type of chemical process
 - No standardised methodology with which to compare different options

Background **Conventional and Solar Gasification (and reforming)**


Solar Gasification 02 Coal + CO₂ + Heat Coal and/or **Biomass** СО Processing Gasification H_2 Plant H_2O Diesel

Conventional Gasification

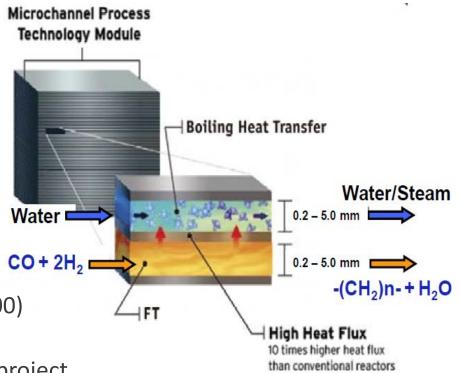
ASTRI Approach

- Selected Solar Fuels as the process closest to commercial
 - 1st Aust. Workshop on Solar Thermal Chemical Processes, Adel. Jan. 2013
 - Syngas production has been demonstrated at 250 kW
 - Long-term commercial drivers for fuels as high value product
- Developed a set of standard conditions by expert opinion
 - Solar Receiver Scale: 50 MW thermal
 - FT (mini) reactor scale: 1500 bbl/day (9.94m³/h)
- Selected Reference site as Geraldton, WA
 - good solar resource, 6.6 kWh/m²/day (DNI)
 - Ready access to all feedstocks (natural gas, coal, wood)
 - Access to seawater for growing algae (micro / macro)
- Selected common economic parameters

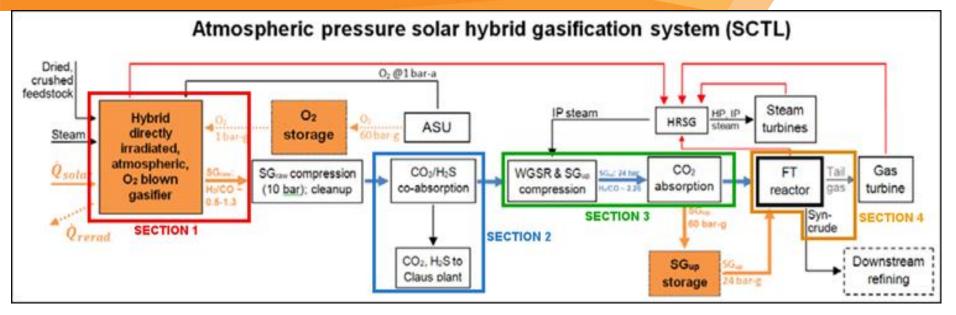
ASTRI Reference Location

ASTRI Reference Field Design

Field Design


Developed with SAM Scaled down from: 270 MW_{th} = 100 MW_e

PARAMETER	CAVITY RECEIVER	EXTERNAL RECEIVER
Type of field	Sector	Surround
Design thermal incident power, MW _{th}	270.6	270.6
Tower height (100 MW _e), m	133	223
Solar multiple	1.33	1.33
Field size (100 MW $_{ m e}$), m 2	708,933	748,104
Optical efficiency of solar field [‡]	56.4%	53.5%
Approximate field size, 50 MW _{th}	130,999	138,237


DESIGN POINT RADIATION TO RECEIVER	50,000	KW
Design point DNI	900	W/m ²
Annual energy yield	110.5	MWh
Solar field capacity factor (annual)	28.9%	
Solar field optical efficiency at design point	58.8%	

Turn-down of FT-reactor

- Current FT Reactors:
 - Employ large tubes
 - Take > 5 days to stabilise
 - No turn-down capability
- New mini-micro reactors
 - Employ small channels or tubes
 - \sim 10 \times higher rates of heat transfer
 - Economic at much smaller scale (< 1/100)
 - Have potential for large turn-down
 - > Being assessed within current ASTRI project
- Various approaches adopted in preliminary assessment
 - Three Hybrid processes: all achieve continuous production
 - Methane reforming: Storage 61% average daily output (requires turn-down)
 - Super-critical gasification: 6 hours storage (requires turn-down)

ASTRI Process modelling

- Processes models were developed for each technology option
 - All assumed "pseudo-steady-state" steady at each time-step
 - Accounted for resource variability, but in different ways
 - > Hybrid cases ensured full output was maintained throughout year

ASTRI – Key economic parameters

$$LCOF = \frac{\sum_{t=1}^{n} (I_t + M_t + F_t - S_t)/(1+r)^t}{\sum_{t=1}^{n} (E_t)/(1+r)^t}$$

LCOF = Levelised cost of fuel in \$/GJ (\$/Litre)

- I_t = Investment expenditure or capital cost in the year t
- M_t = Operations and maintenance cost in the year t
- F_t = Feedstock cost in the year t
- S_t = Annual sale price of any electricity in the year *t*, if produced from the process, in AUD
- E_t = Quantity of energy produced (GJ), including electricity for sale in year *t*.
- r = Discount rate
- *n* = Amortisation period

ASTRI – Key economic parameters

SOLAR COST COMPONENTS	CURRENT COST (2014 AUD)	FUTURE COST 2020 (2014 AUD)	UNITS		
Solar Field plus site costs	240	135	\$/m²		
Tower	51.0	46.6	\$/kW _{th}		
Receiver (based on molten salt)	150.8	137.7	\$/kW _{th}		
BOP solar	35.1	32.1	\$/kW _{th}		
Solar field O&M	65	55.8	\$/(kW _{th} .year)		
Power generation	1025	965	\$/kW _e		
Syngas storage	20,833	19,027	\$/GJ		

ASTRI – Summary of economic analysis

Process	Technical feasibility (22%)	Solar share (10%)	Economic feasibility	-LCOF (\$/L)	Sustainability (20%)	-Feedstock sustainability · · · · · · · · · · · ·	-CO ₂ emission (50%)	Stage of development (15%)	Overall	Priority
Solar mixed reforming of methane	7.8	3.0	6.8	\$1.0/L	2.5	1.0	4.0	6.5	5.7	1
Solar hybridized coal gasification via vortex flow reactor	6.3	3.0	5.3	\$1.2/L	1.0	1.0	1.0	4.5	4.3	2
Solar hybridized coal gasification via dual fluidised bed gasifier	7.5	3.0	7.1	\$0.9/L	1.0	1.0	1.0	6.0	5.4	1
Solar hybridized biomass gasification via dual fluidised bed gasifier	7.0	3.0	4.5	\$1.4/L	9.0	8.0	10.0	6.0	6.0	1
Supercritical water gasification of Algae	5.8	5.0	2.3	\$2.9/L	9.0	8.0	10.0	6.5	5.3	1
Thermochemical cycles	5.0	10.0	2.3	\$2.0/L	7.8	5.5	10.0	7.0	5.4	1

- ASTRI Milestones for costs by Dec 2016:
 - \$1.20/L for fossil fuel feedstock with a life-cycle emission of CO₂ that is at least 10% lower than conventional diesel, and
 - 2.50/L for future renewable feedstock with a life-cycle emission of CO₂ that is at least 50% lower than conventional diesel.
 - Note: "Targets" could be set lower
- ASTRI milestone for wholistic viability:

develop a broad assessment system

Acknowledgements

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

Thank you

