

ASTRI Overview

ASTRI 2015 Annual Workshop

Manuel J. Blanco, Ph.D., Dr.Ing. | Director, ASTRI 11 February 2015

Index

- ASTRI Overview
- Relevance of CST
- Trends and priorities in CST research
- Technologies that ASTRI will deliver
- How Australia will benefit from ASTRI
- The need for a System Approach
- Concluding remarks

Australian Solar Thermal Research Initiative

ASTRI is committed to demonstrating a pathway for reduction in LCOE of CSP plants, targeting 20 c/kWh in Year 3 and 12c/kWh by 2020 whilst providing dispatchable firm supply

- Budget: \$87m
 - ARENA \$35m
 - Partners \$46m
 - Industry \$6m

- Program 8 years (2013-2020)
 - with critical review in Year 4 (2016)
 - Overarching Economic Modelling
 - Research Nodes
 - Reduce CapEx
 - Increase capacity factor
 - Improve efficiency
 - Add Product Value
 - Education Program

ASTRI Objectives

ASTRI LCOE Targets

Key Performance Indicators (KPIs)

			2014	2015	2016	2017	2018	2019	2020	
КРІ	ASTRI Objective and KPI	Y1	Y2	Y3	Y4	Y5	Y6	¥7	Y8	Total
	Research Quality									
1	Number of refereed journal publications	3	7	10	15	15	20	22	28	120
2	Percentage of joint refereed journal publications	0%	10%	15%	20%	22%	25%	28%	30%	
	US Collaboration									
3	3 Visits to/from US Collaborators		5	5	5	7	9	11	12	59
4	Number of new projects started with US institutions	0	1	3	5	4	4	4	4	25
	Human Capacity									
5	Accumulative number of new staff/postdocs/PhDs recruited	8	18	30	42	55	65	75	80	80
6	Accumulative number of post-graduate student completions ^b	0	0	0	4	12	20	28	44	44
	Collaboration involving research training									
7	Number of student/staff visits between partner institutions	20	20	20	20	20	20	20	20	160
	Industry Engagement									
8	Funding from external sources (\$k)	\$0	\$200	\$250	\$300	\$500	\$800	\$1,200	\$2,000	\$5,250
	Knowledge Transfer									
9	Number of conference presentations	3	5	7	10	12	15	18	22	92
	Financial									
10	Accumulative In-kind contributed (\$k)	\$2,249	\$6,249	\$10,613	\$15,138	\$19,432	\$25,448	\$31,184	\$36,744	\$36,744
	Technical ^a									
11	LCOE (c/kWh)	26.5	25	21.5	19.5	17.5	16	14	12	12
12	Overall annual efficiency (%)	13	14	15	16	17	17.5	18	18.5	18.5
13	% Reduction in CapEx	0	0	10	15	20	25	32	40	40
14	% Increase in capacity factor	0	0	10	15	20	23	26	30	30
15	O&M costs (\$/kW-y)	80	80	75	70	65	60	55	50	50
	^a The overarching economic modelling is required to produce t									

ASTRI Partners

CSIRO

University of South Australia

Australian Government

Australian Renewable Energy Agency

University Partners

University	World Rank 2014	University	World Rank 2014		
THE UNIVERSITY OF QUEENSLAND	47	QUT	352		
Australian National University	72	University of South Australia	479		
ARIZONA STATE UNIVERSITY	143	Flinders UNIVERSITY			
THE UNIVERSITY of ADELAIDE	191	Source: www.usnews.com/education	on/best-global-universities		

CSIRO

CSIRO

Human capacity

	Numl					
Institution	Senior Researcher	Post-Doc	Doctoral Student	Other	Total	
CSIRO	7	3	1	0	11	
Australian National University	6	1	2	0	9	
University of Queensland	10	3	5		18	
University of Adelaide	9	3	5	0	17	
University of South Australia	6	0	2	0	8	
Queensland University of Technology	6	1	4	1	12	
Flinders University	4	1	0	0	5	
TOTAL	48	12	19	1	80	

ASTRI Infrastructure

CSIRO – National Solar Energy Centre (NSEC)

Infrastructure

• 2 solar towers and field, demonstrated sustained operation above 750°C (500 kWth and 1000 kWth)

Experimental Capabilities

- Computer-based modelling skills that cover a full spectrum of applications from detailed reaction models to process simulation, computational fluid dynamics and transient system performance predictions.
- Laboratory facilities for evaluating the thermal aspects of receiver design
- Laboratory facilities for preparing and assessing novel catalyst development
- Engineering facilities for mirror fabrication and testing

ASTRI Infrastructure

- ANU Solar Thermal Engineering Group
 - Infrastructure
 - Solar concentrators: 3.5-m² solar trough, 20-m² dish, 400-m² dish, 500-m² dish
 - 45-kW_e high-flux solar simulator (in preparation)
 - Solar heating and cooling
 - Fundamental research: optics, radiative spectroscopy and radiometry, thermochemistry, materials characterization
 - Also facilities for optics, thermochemistry, fluid mechanics, heat transfer, materials characterization

ASTRI Infrastructure

UQ - Turbine test facility

QUT - Dust-Monitoring equipment

UQ – Gatton wind tunnel

USA Solar Energy Collaboration

- The ASTRI objectives link into the SunShot objectives through collaboration with:
 - initially
 - Sandia National Labs
 - NREL
 - Arizona State University
 - Other
 - US labs
 - Universities, and
 - Industry

Source: US DOE (2012) presented at USASEC workshop 8-Jun-2012, Austin, Texas

ASTRI Research Nodes and Interactions

	Nodes and Project Collaboration		CSIRO	ANU	UQ	UoA	UniSA	QUT	Flinders
P01	Overarching Economic Model	1	Lead		х	х	х	х	х
	Node 1: Reduce capital expenditure (CapEX)			Lead					Sub Lead
P11	Heliostat cost reduction	2	х	Lead		х	х		х
P12	Receiver performance	3	х	Lead	х				х
	Node 2: Increase capacity factor		Lead				Sub Lead		
P21	Storage thermo-economic model	4	Lead	х		x	х		
P22	Reliable low-cost PCM storage	5	х				Lead	х	
	Node 3: Improve efficiency		Sub Lead		Lead				
P31	Supercritical CO2 system development	6	Lead		х	x			
P31A	Supercritical CO2 power block		х		Lead			x	
P31B	Supercritical CO2 system		Lead		x				
	Node 4: Add Product Value					Lead		Sub Lead	
P41	Cleanliness and cleaning	7	х		х			Lead	
P42	Solar reactor development	8	х	х		Lead			
P02	Education Program	9		х	х	Lead	х	х	х

Education Program

- Objective:
 - Develop CSP technical courses and enhance research opportunities for higher degree research (HDR) students in CSP
- Approach:
 - Develop modules for undergraduates, master's and intensive courses
 - Use e-learning tools
 - Invited lectures from world experts
 - Develop and share practicals to improve experience

We are working on...

P01 OEM

The Overarching Economic Model project has a primary objective to develop a model framework for evaluating ASTRI progress against the Technical KPIs.

This is aided through several contributing objectives:

- Development of cost models for current commercially available CST plant components
- Collaborative development of cost and performance models for new ASTRI technologies
- Expansion of the solar data sets for more rigorous analysis of technology performance under real conditions
- Analysis of uncertainty and sensitivity in CST systems to assist in establishing the best ASTRI research targets.

Central Receiver Tower Reference Case

P11 Heliostat Field Cost Down

- Demonstrate proof-of-concept for a new, low cost heliostat
- Technical KPI is \$120/m² inc. manufacturing, installation, commissioning
- Stretch target is \$90/m² ... and this is the figure we are aiming for!
- High level of collaboration (actively involves all but one ASTRI party)
- Product focus targets partnering and engaging with industry, encouraging commercialisation
- Execution by emerging and mid-career researchers, good vehicle for building human capacity in solar R&D
- Carry out some top quality R&D!

P11 Heliostat Field Cost Down

P12 Receiver Performance

- Demonstrate proof-of-concept for two promising highefficiency receiver concepts: a tubular receiver and a particle receiver.
- Technical KPIs:
 - Tubular receiver: 91% thermal efficiency at design point (i.e. outgoing fluid at 700°C with 1 MW/m² average flux)
 - Particle receiver: 85% thermal efficiency at design point (i.e. outgoing particles at 800°C with 1 MW/m² average flux)
- High level of collaboration, linkages to other work within ASTRI (storage, sCO2 Brayton)

P12 Receiver Performance

P21 High temperature storage

• Identify and **develop storage technology** that affords a 20 percentage point increase in capacity factor above the trough reference case without increasing LCOE.

This will be achieved by:

- Developing a **common-basis modelling platform** to support annual performance and techno-economic analysis of a range of candidate storage technologies, including optimisation of design and operational strategy. This will be a new tool, providing high-fidelity assessment and optimisation of different storage concepts and their associated operational strategies. It will also provide direction to the experimental direction.
- Undertaking targeted **experimental evaluation** of materials and heat transfer processes to support system-level storage concept development, to improve the accuracy of performance estimation for novel storage systems and materials and improve understanding of limiting design factors and materials constraints.

P21 High temperature storage

Systems		Storage Dens	sity	Increment								
Systems	Heat of Reaction Specific Energy Storage Heat Reaction on storage densit		e density									
(KJ/MOI)		от) (кл/кg)	(KWNt/m)(STP)									
	100 1350 200		1	43								
CaCO3/CaO	167	1670	1253	5.	96							
SrCO3/SrO	234	1585	1647	7.	84							
BaCO3/BaO	305	1546	1840	8.	76							
La2O2CO3/La2O3	145.5	5 393	284	1.	35							
Gas Cycles*		_		Ab	undance and cost of feedstock	[
Ammonia	67	Systems	Reserves Wo	orldwide								
Steam Reforming of Methane	205		(metric tonnes or	Earth's Crust)	Price USD per tone/m ³	Cost of feedstock (\$/kWh _t)		/kWh _t)				
Dry Reforming of Methane	247	Cault an attack (Ultraducertic										
Sulfur Based TES (sulfur combustion)	300	Carbonates/Hydroxid			400.750							
H2S Thermolysis	90.5	Ca(OH)2/CaO	Ca 5% Earth	r's Crust	400-750		0.19					
Methanolation-Demethanolation	90.7	CaCO3/CaO	Ca 5% Earth	r's Crust	40-70		0.15					
Chemical Looping Combustion*	150	SIC03/SIU	SF 370 ppm E	arth Crust	280-530		1.20					
2n0/2n (CL)	450	Gas Cycles	Ba 0.03% Ea	rth Crust	200-500		1.10					
Ee2O3/EeO (CL)	58.1	das cycles	1.045,00	victornos	704		0.65					
NiO/Ni(CL)	934	Ammonia Cham Deferming of Meth	1.31E+08 met	ric tonnes	704		0.65					
CuO/Cu (CL)	545	Dry Reforming of Motha	alle 3E+14 metri	c tonnes	Including Catalyst NIO 1:0.1		0.63					
Redox Metal Oxides		Sulfur Deced TES (sulfur comb	austion 1 805 - 08 mot	c tonnes	200,200 (U2CO4)		0.67					
Co3O4/CoO	202.	H2S Thormolycic	Supton Supton	tic tonnes	200-300 (H2SO4)		29.42					
Mn2O3/Mn3O4	31.9	Mothanolation domothano	lation Synthe	tic -	20000-30000		35.42					
BaO2/BaO	77	Chamical Looping Comb	ustion	:uc				Tem	Temperatures & Pressures			
CuO/Cu2O	64.5		70 nom Eart	h's Crust	Systems						-	Power Cycle
La2CoO4/La2CoO4+δ	485 - 3	Sp02/Sp0/CL)	2.2 ppm Eart	b's Crust			Charge (⁰ C)	Discharge (⁰ C)	ΔTmax	Pressure	Pressure	
Molten salts		Ee203/Ee0 (CL)	63000 ppm Ea	rth's Crust						Charge (kPa)	Discharge (kPa)	
60%NaNO ₃ 40%KNO ₃	NO ₃ 40%KNO ₃ 1.53 (kJ•k 16205)100 (cc) 05000 ppm Earth's Crust		h's Crust	Carbonates/Hydroxides		507	507		101.005	101.005		
			50 ppm Eart	h's Crust	Ca(OH)2/CaO		507	507	0*	101.325	101.325	Out of limits
		Reday Metal Oxides	08 ppin Lait	II S CIUSE	SrCO3/SrO		880	860	20	101.325	101.325	SC Brayton
			75 nnm Fart	h's Crust			800	800	0*	101.325	101.325	SC Brayton
		Mn2O3/Mn2O4	680 ppm Earl	th's Crust	Gas Gualas		1342	1342	0.	101.525	101.525	Outor minus
		Pa02/Pa0	Ba 0.02% Ear	th's Crust	Gas Cycles		000	450		000 45000	1000 20000	
		CuO/Cu20	68 ppm Eart	h's Crust	Ammonia		800	450	0	900-15000	1000-30000	
		1a2CoO4/1a2CoO4+8	Synthe	tic	Steam Reforming of Ivietnan	ie	950	530	420	10000-15000	10000-15000	
		Maltan salta	Synthe		Dry Reforming of Methane	11 A	950	530	420	10000-15000	10000-15000	
			Na 2.6 % Ear	th's crust	Sultur Based TES (sultur combus	stion)	850*	1200	920	101.325	101.325	CC Drawton
	l	60%Na 40%K			H25 Thermolysis	ion	1097	800	297	101 225	15000 E000 10000	SC Brayton
					Chamical Leaning Combusti	.011	250	200	30	101.525	5000-10000	Outor minus
						on	077	500	477	101 225	101 225	Out of limits
				-	Sp02/Sp0(CL)		977	500	4//	101.325	101.325	
					Eo202/500 (CL)		977	625	200	101.325	101.325	W/S Panking
					NiO/Ni (CL)		1105	717	178	1519 875	1519.875	WS Rankine
							900	800	470	101 325	101 325	SC Brayton
					Redox Metal Oxides		500	000	100	101.525	101.525	SC Drayton
							900	870	30	101 325	101 325	SC Brayton
					Mn2O3/Mn3O4		980	550	430	101.325	101.325	WS Rankine
					BaO2/BaO		780	690	430	101.325	101.325	WS Rankine
							1100	900	200	101.325	101.325	SC Brayton
					1a2CoO4/1a2CoO4+8		1100	700	400	101.325	101.325	WS Rankine
				r r	Maltan salt		1100	700	400	101.525	101.525	vo namatic
					wolten saits		650	600	50	4053	4053	Rankine
					60%Na 40%K							

Develop technology for construction of a high performing thermal storage system using PCM, costing less than \$25/kWh_{th}

- New methods to measure thermophysical properties of high temperature PCMs
- New PCMs with lower cost and better thermophysical properties will be investigated
- Investigate potential materials for construction of the storage tanks
- Cost analysis will be conducted to determine the effect of thermal storage on the LCOE
- Investigate encapsulated high temperature PCM
- Extensive simulations using computer models to evaluate the thermal performance of various storage systems. Different construction materials, thermal storage media and heat transfer fluids (including sCO₂) will be investigated
- Two prototypes will be built and tested for sCO2 CSP application

P22 PCM storage

- Technical achievements
 - Literature review of material properties and systems (300 to 710 C)
 - > Tested (cycling and stability) potential candidates from 400-650 degrees C
 - Some PCM properties measured do not match those published in the literature
 - Conventional temperature-history method to measure latent energy not valid at high temperatures
 - Techno-economic analysis revealed that some alloys as well as salts should be considered as PCMs

P22 PCM storage - Hot oil test rig

- preliminary validation of computer models at mid-temperature range
- determine potential problems for higher temperature prototypes before construction

Node 3

Node 3

Cooling tower research facilities

- Gatton wind tunnel
- Phase Doppler Particle Analyser (PDPA)
- 20m Tower

The overall aim of the project is to reduce the O&M component of LCOE from \$80/kW-y to \$50/kW-y by improving mirror-cleaning efficiency and by optimising O&M tasks.

1) **Mirror cleaning**, which is aimed at reducing cost of cleaning using a non-contact method. The object of the study is to understand the dynamics of spray formation and to quantify effectiveness of cleaning.

2) **Operation and maintenance**. To establish reliability modelling and condition monitoring systems and to make O&M decisions more cost effective and to reduce unexpected failures.

Spray-cleaning Testing Facility

Set-up of spray nozzles.

Set-up and alignment of laser for measurement of droplet size and velocity

Self cleaning mirror coatings

Research at Flinders University is aimed at developing silica nanoparticle self-cleaning coatings for mirror surfaces

Early synthesis.

Two types of silica nanoparticles, one with vinyl functionalization and the other with thiol functionalization on the surface. Have managed to get the size to just over 100 nm for both types of particles.

However this film is not transparent and from the SEM appears to have substantial agglomeration.

Decision Support for O&M

Getting Involved

- Industry partnerships
- ASTRI is keen to develop mutually beneficial relationships with industry in
 - Individual projects related to the various processes involved in a CST plant
 - A range of projects with a systems concept

Current student positions

- At ANU Solar fuel production via supercritical water gasification of biomass
- At ANU Concentrating solar thermal optical modelling
- At ANU Sensible energy storage coupled to a sodium receiver

http://www.astri.org.au/get-involved/

Acknowledgements

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

Thank you

Manuel J. Blanco, Ph.D., Dr.Ing. ASTRI Director

- t +61 2 4960 6118
- e <u>manuel.blanco@csiro.au</u>
- w www.csiro.au/astri

