

Poster session introduction

ASTRI Symposium on The Future of Concentrating Solar Thermal Technology

Joe Coventry | ASTRI Project Leader 2 May 2016

Snapshot

Discover ...

P12

... why our heliostat wind tunnel studies, CFD modelling and knowledge of wind gusting in the atmospheric boundary layer will result in heliostat capital cost reduction [Yu et al., Emes et al.]

... how by simulating a simple free falling particle receiver concept we have discovered a novel way of improving solar absorptance while achieving more uniform particle heating [Kumar et al.]

P22

... why phase change materials based on eutectic mixtures of $Na_2CO_3 - NaCl$ and $Na_2CO_3 - Li_2CO_3$ show great potential for reducing cost and increasing the capacity factor of thermal energy storage [Jiang et al.]

Discover ...

P31a

...what temperature supercritical carbon dioxide Brayton cycle is most likely to achieve the ASTRI technical KPI of 12 c/kWh [Aghaeimeybodi et al.]

... how the effectiveness of spray cleaning of mirrors can be significantly enhanced by tuning the angle of the water jet and proximity of the nozzle to the mirror [Anglani et al.]

P42

... how using nano-structured ceria in a redox cycle shows can improve the kinetics of syngas production, and how nano-structured ceria can be manufactured in a scalable process using flame synthesis [Gao et al.]

P41

Acknowledgements

The Australian Solar Thermal Research Initiative (ASTRI) Program is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

